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Two direct numerical simulations of several buoyant bubbles in a two-dimensional 
periodic domain are presented. The average rise Reynolds number of the bubbles 
is close to 2, and surface tension is high, resulting in small bubble deformation. 
The void fraction is relatively high, and the bubbles interact strongly. Simulations 
of the motion of both 144 and 324 bubbles show the formation of flow structures 
much larger than the bubble size, and a continuous increase in the energy of the 
low-wavenumber velocity modes. Plots of the energy spectrum show a range of 
wavenumbers with an approximately -5/3 slope. This suggests that a part of the 
work done by the buoyant bubbles is not dissipated, but instead increases the energy 
of flow structures much larger than the bubbles. This phenomenon, which is also 
seen in numerical simulation of forced two-dimensional turbulence, prevents the 
appearance of a statistically steady-state motion that is independent of the size of the 
computational domain. 

1. Introduction 
While direct numerical simulations of complex unsteady single-phase flows have 

become a standard research tool in fluid mechanics, simulations of multiphase flows 
are much less common. Generally, such simulations are limited to the isothermal 
motion of two-fluid systems with a relatively simple geometry, such as a single drop 
or a bubble. In most engineering systems, however, it is the collective behaviour of a 
very large number of bubbles, drops, or particles that is of interest. For engineering 
predictions, averaged equations for mean quantities and low-order statistics are 
employed (see Drew 1983 and Drew & Lahey 1993 for example). However, the 
averaging results in unknown terms that must be modelled. Such models are analogous 
to closure models for the Reynolds stresses in turbulent single-phase flows, but involve 
the forces due to the interactions between the phases in addition to momentum 
transfer by velocity fluctuations. As for single phase flows, the fundamental small- 
scale interactions can not be addressed unless the range of scales investigated is large 
enough. Therefore, simulations of a large number of bubbles, drops, or particles are 
required. 

In this paper we present the results of direct simulations of the unsteady motion 
of 144 and 324 two-dimensional bubbles in a fully periodic domain. The work is 
motivated by several simulations of systems containing a relatively small number of 
bubbles described in Esmaeeli & Tryggvason (19964. There, each simulation reached 
an approximately steady state relatively quickly, but the results did not appear to 
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converge as the size of the system (number of bubbles) was increased. To address 
this issue, we undertook the simulations described here. The main observation is that 
unlike systems with a small number of bubbles, the large systems do not seem to settle 
down to a steady state during the time we simulated. Instead, larger and larger flow 
structures continue to emerge. Although somewhat surprising at first, this behaviour 
has been seen before in numerical simulations of two-dimensional turbulence. After 
presenting our results and discussing their relation to two-dimensional turbulence, we 
conclude with a few remarks about the relation of these results to other systems as 
well as the implication for modelling of multiphase flows. 

Other simulations of systems with several bubbles, drops, or particles at finite 
Reynolds numbers are limited to work done by Feng, Hu, & Joseph (1994) who sim- 
ulated the two-dimensional, unsteady motion of up to four rigid particles, Unverdi 
& Tryggvason (1992a,b) who computed the interactions of two two- and three- 
dimensional bubbles, and Esmaeeli & Tryggvason (1996a,b) (see also Esmaeeli 1995) 
who simulated the unsteady motion of several two- and three-dimensional bubbles. 
Esmaeeli & Tryggvason used sixteen bubbles in most of their two-dimensional compu- 
tations and up to eight for their three-dimensional simulations. In the zero Reynolds 
number limit, where all inertia effects are neglected (Stokes flow), a few researchers 
have simulated reasonably complex flows. Brady and coworkers have followed the mo- 
tion of several particles in both two and three dimensions using a multipole expansion 
technique (see Brady & Bossis 1988; Brady 1993), Zhou & Pozrikidis (1993, 1994) 
simulated the evolution of up to twelve two-dimensional, fully deformable drops 
in a shear flow using a boundary integral technique, and Manga & Stone (1993) 
computed the interaction of two three-dimensional drops in the same way. For 
very high Reynolds numbers, the motion of several bubbles has been modelled 
by simulating the evolution of spheres in a potential flow. See, for example, 
Sangani & Prosperetti (1993), Sangani & Didwania (1993), and Smereka (1993). 

For a more thorough discussion of the use of numerical simulations for investiga- 
tions of multiphase flows, including a more extensive literature survey, see Esmaeeli 
& Tryggvason (19964. 

2. Formulation and numerical method 
The computational domain is a doubly periodic square box, such that bubbles 

that leave through one boundary will reappear through the opposite boundary. The 
Navier-Stokes equations are valid for both fluids, and a single set of equations can be 
written for the whole domain as long as the jump in viscosity and density is correctly 
accounted for and surface tension is included : 

* + V - p u  u = -Vp + (PO - p)g + V . p ( V u  + VuT)  + CT - x;)dA’. (2.1) 
at 

Here, u is the velocity, p is the pressure, p and p are the discontinuous density 
and viscosity fields, respectively, and CJ is the constant surface tension coefficient. 
Interfacial forces are added at the interface between the bubbles and the ambient 
liquid and 6 is a two-dimensional delta function. The integral is over the bubble 
surface. This results in a force that is smooth along the surface of the bubble. t is a 
tangent vector to the bubble surface and s is an arclength coordinate. Carrying out 
the differentiation leads to the usual expression for the surface tension, CJIIIC, where 
II is a normal vector and IC is the curvature. The form written down here is the one 
we use in our code. For periodic domains, we need to impose additional constrains 
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to prevent uniform acceleration of the whole flow field in the direction of gravity. 
Here, we add a body force, pog, where po is the average density, to the equations for 
this purpose. This ensures that the net flux of momentum through the computational 
domain is zero. If the bubbles were completely massless, this would be equivalent to 
imposing no net throughflow of liquid. However, since the density of the bubbles is 
finite here, their upward motion is accompanied by a slight net downward motion of 
the liquid. This motion is very small. 

The momentum equations are supplemented by the incompressibility condition : 

v - u  = 0 (2.2) 

which, when combined with the momentum equations leads to a non-separable elliptic 
equation for the pressure. The density and viscosity of each fluid is constant. 

The rise of a single buoyant bubble is governed by four non-dimensional numbers. 
Two of those are the ratios of the dispersed phase (gas) density and viscosity to 
those of the continuous phase (liquid): y = pb/po and 2 = pb/po. Here, the subscript 
o denotes the ambient liquid and b stands for the gas in the bubble. Once these 
ratios are sufficiently small, their influence on the motion is small. The remaining two 
numbers can be selected in a number of ways. If we pick the density of the outer 
fluid, po, the effective diameter of the bubble, d,, and the gravity acceleration, g ,  to 
make the other variables dimensionless we obtain 

The first number is sometimes called the Gallileo or the Archimedes number (see 
Clift, Grace & Weber 1978) and is a Reynolds number squared based on the 
velocity scale ( g d e ) l j 2 .  The second one is usually called the Eotvos number. In 
the chemical engineering literature, N is usually replaced by the Morton number, 
M = gp:/p003 = Eo3/N2 ,  which is constant for a given fluid if the gravity acceleration 
is constant. For bubbly clouds where many bubbles rise together, the void fraction 
a, defined as the volume of the dispersed phase divided by the total volume, must 
also be specified and for more complex flow fields, such as a shear flow, additional 
parameters are needed. When presenting our results we non-dimensionalize time by 
( d e / g ) 1 / 2  and length by the bubble diameter. 

The numerical technique used for the simulations presented in this paper is the 
Front Tracking/Finite Difference method of Unverdi & Tryggvason (1992a,b). The 
procedure has been described in detail there. The Navier-Stokes equations are solved 
on a fixed, uniform, staggered grid and discretized using a conservative, second-order 
centred difference scheme for the spatial variables and an explicit second-order time 
integration. The novelty of the scheme is the way the boundary, or the front, between 
the bubbles and the ambient liquid is tracked. The front is represented by separate 
computational points that are moved by interpolating their velocities from the grid. 
These points are connected by line elements to form a front that is used to keep 
the density and viscosity stratification sharp and to calculate surface tension. At 
each time step information must be passed between the front and the stationary grid. 
The density jump is distributed to the grid points next to the front to generate a 
smooth density field that changes from one density to the other over two to three 
grid spaces. While this replaces the sharp interface by a slightly smoother grid 
interface, all numerical diffusion of the density jump is eliminated since the grid field 
is reconstructed at each time step. Once the density has been found, the viscosity is 
set as a function of the density. The pressure equation, which is non-separable due 
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to the difference in density between the bubbles and the ambient fluid, is solved by 
a multigrid package (“MUDPACK”, see Adams 1989). The method and the code have 
been tested in various ways, such as by extensive grid refinement studies, comparison 
with other investigations and analytical solutions. In Jan & Tryggvason (1996) we 
compared our results using an axisymmetric implementation of the method used here 
with one of the cases computed by Ryskin & Leal (1984) ( R e  = 20 and W e  = 12) and 
found our rise velocity to be within 2% of theirs for a bubble resolved by about 25 grid 
points per radius (and a large enough computational domain so that wall effects could 
be ignored). In the same paper we also compared our results with analytical results 
for the rise of a bubble in a pipe in the limit of zero Reynolds number and found 
less than 2% error for similar resolution. Resolution tests using the two-dimensional 
code used here are presented in Esmaeeli & Tryggvason (1996a), where we report 
grid refinement studies for both a single bubble as well as for a system of 16 bubbles. 
The governing parameters were the same as used here. Generally, the resolution 
requirement decreases with Reynolds number and the resolution used here, about 13 
grid points per bubble diameter, resulted in essentially the same evolution as a run 
with about 20 points per bubble diameter, although the rise velocity on the coarser 
grid was slightly lower (3% for the single bubble and 5% for the 16 bubble system). 

3. Results 
Here we present the results of two simulations of the evolution of 144 and 324 

two-dimensional bubbles in a doubly periodic domain. The governing parameters are 
selected in such a way that the rise Reynolds number is low and the bubbles remain 
nearly cylindrical. The void fraction is relatively high so the bubbles interact strongly. 
The computations are done in a domain that is 12 by 12 units for the 144 bubble 
run and 18 by 18 units for the 324 bubble run. In both cases the effective diameter 
of each bubble is 0.4 units. (Although the volume of each bubble remains constant, 
they generally deform slightly and are exactly circular only at t = 0). Gravity is set 
to 1, and the fluid density and viscosity are 25 and 1.12468, respectively. The surface 
tension coefficient is 4.0. The density and viscosity of the gas are one twentieth of the 
corresponding liquid properties. In terms of the non-dimensional numbers introduced 
in the preceding section, we have 

E o  = 1.0; N = 103’2 (A4 = y = 0.05; i = 0.05; a = 0.1256. 

For these parameters a single two-dimensional bubble in a doubly periodic domain 
will have a rise Reynolds number of 1.6 which is comparable with that given in 
figure 2.5 in Clift et al. (1978) for a three-dimensional bubble in an unbounded 
fluid. These values of the non-dimensional parameters could, for example, be realized 
using air bubbles of diameter 1.9 mm in standard engine oil (taking CJ = 0.03 N m-’, 
p = 880 kg mP3, and p = 0.21 N s mP2), with the exception that the density and 
viscosity ratios would be lower. However, extensive tests with lower ratios of the 
material properties (down to 1/300) have shown that the effect of the bubble density 
and viscosity are already very small for the values used here, see Esmaeeli (1995). 
The 144 bubble computation is done on a grid with 3862 mesh points and was run 
up to non-dimensional time 175.6, while the 324 bubble computation was done on a 
578* grid and run up to non-dimensional time 147.9. The size of the time step was 
constant and the total number of time steps was about 41000 and 35500 for the 144 
and the 324 bubble runs, respectively. The computations took 33 s per time step for 
the 144 bubble run and 82 s per time step for the 324 bubble run on an IBM-SP1 
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FIGURE 1. The initial conditions for the 144 bubble simulation (a) and the 324 bubble simulation 
(b) .  The resolution used is 3862 and 5782 grid points, respectively. 

workstation. The initial positions of the bubbles were set by starting with regular 
arrays of bubbles, 12 by 12 and 18 by 18, and 'manually' perturbing their positions 
in a quasi-random way. Figure 1 shows the initial conditions for both runs. 

Figure 2 shows two frames from the 144 bubble run. Both the bubble surfaces and 
the velocity field, plotted at every 6th grid point, are shown. The times are selected 
near the beginning of the run ( t  = 15.8, in a) and at the end of the run ( t  = 175.6, 
in b). The velocity vectors are scaled by the same constant in both frames, and it is 
immediately obvious that the velocities are generally larger at the later time. While the 
flow field at the early time is relatively irregular, in several places there are 'streams' of 
fast moving upward flow driven by several bubbles lining up in tandem. At the later 
time there is a well-defined up-flow region near the right boundary of the domain 
and a distinct, although not quite as uniform, down-flow region in the middle of the 
domain. We also note that while the bubbles are relatively evenly distributed at time 
zero, the result at later time shows both regions with relatively high concentration 
of bubbles and regions which are nearly free of bubbles. Similar evolution is also 
seen in figure 3, where we plot the bubble configuration at two times for the 324 
bubble simulation. Figure 3(a) shows the results at time 15.8, and 3(b) at time 147.9. 
Instead of the velocities, here we plot twenty equispaced streamfunction contours. 
The streamfunction plots show clearly the emergence of flow structures that are many 
times larger than the bubbles, and that the size of these structures is much larger 
at the later time. As we may expect, the up-flow regions generally contain a high 
concentration of bubbles, but the down-flow is, for the most part, void of bubbles. 

The details of the flow field around each bubble are not very clear in figures 2 and 3, 
so in figure 4 we plot the velocity field and the bubbles for the small rectangular region 
outlined near the middle of figure 3(b). Here, the velocity is plotted at every grid point, 
and it is clear that even the smallest length scales of the flow field are well resolved. 

In figure 5 we plot the average rise Reynolds number of the bubbles versus time, for 
both runs. Both simulations show a slow increase in the average rise Reynolds number, 
and although the detailed evolution of the bubbles is very different, the averages are in 
relatively good agreement. We note that giving the rise velocity in terms of a Reynolds 
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FIGURE 2. Two frames from a simulation of the evolution of 144 bubbles in a doubly periodic box. 
The bubbles and the velocity field is shown at times 15.8 (a) and 175.6 (b) .  The computation is done 
on a 3862 grid, but here the velocity vectors are shown at every 6th grid point. 



Energy cascade in bubbly flows 321 

FIGURE 3. Two frames from a simulation of the evolution of 324 bubbles in a doubly periodic box. 
The bubbles and the streamfunction, with respect to a stationary frame, are shown at times 15.8 (a) 
and 147.9 (b) .  The computation is done on a 5782 grid. 
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FIGURE 4. An enlarged view of the bubbles and the velocity field in the rectangle drawn in the 
middle of figure 3(b). 
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Time 
FIGURE 5. The average rise bubble Reynolds number versus time. The results for the 144 bubble 

simulation are shown by a solid line and the 324 bubble results by a dashed line. 
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FIGURE 6. The average kinetic energy per unit volume of the ambient liquid, normalized by pogd,, 
as a function of time for both the 144 and the 324 bubble simulations. The results for the 144 
bubbles are shown by a solid line and the 324 bubble results by a dashed line. The straight line fit 
is used to estimate the average rate of energy increase. 

number is not entirely consistent with the non-dimensionalization used elsewhere in 
the paper, which would result in (d,g)'/2 as a velocity scale. However, the velocity 
can be obtained in these units by dividing the Reynolds number by (N) ' l2  = 5.6234. 
To examine the liquid velocities we plot, in figure 6, the average kinetic energy per 
unit volume, normalized by pogd,, versus time for both runs. It is clear that the 
energy is constantly increasing. This behaviour confirms what we already saw from 
the velocities and the streamfunction in figures 2 and 3, and is also consistent with 
the gradual increase in the bubble Reynolds number in figure 5. The reason for the 
large fluctuations near the end of the computation with fewer bubbles is likely due 
to length scales that have reached the size of the computational domain. To examine 
in more detail how the length scales in these flows evolve, we plot in figure 7, the 
two-dimensional 'kinetic energy' spectrum at three selected times for both the 144 
bubble run ( a )  and the 324 bubble run (b) .  The focus here is on the velocity field, 
and the spectrum is computed from the velocity field in the whole computational 
domain, irrespective of whether a point is inside or outside a bubble. Therefore, E as 
defined below is not strictly the kinetic energy, since we have ignored the variation in 
density between the bubbles and the ambient liquid. When the void fraction is large, 
there can be a significant difference between E and the true kinetic energy, since the 
highest velocity is often inside the bubbles. As the void fraction becomes smaller, E 
approaches the true kinetic energy. To bring out the scaling of the spectrum, ln(E) 
is plotted versus ln(k). The spectrum is computed by first interpolating the velocity 
onto a 2562 grid for the 144 bubble run and a 5122 grid for the 324 bubble case, and 
then finding the discrete Fourier transform by 

N-1 M-1 

n=O m=O 
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FIGURE 7. The energy spectrum at three times. In(E) versus ln(k). (a)  The 144 bubble run. ( b )  The 
324 bubble run. Lines with slope +3, -5/3,  and -3 are included for reference. 

N and M are the number of grid points in the horizontal and the vertical directions, 
respectively (here N = M).  The energy content of each mode is then computed by 

where k - 1/2 < (12  + j2)1'2 < k + 1/2. Since the highest wavenumbers are only 
partially filled, we only plot k < 128 (i.e. ln(E) < 4.85) for the 144 bubble run and 
k < 256 (i.e. ln(E) < 5.54) for the 324 bubble run. Since it is the slope of the energy 
spectrum that is of most interest, the plot in figure 7 has not been normalized in any 
way. Non-dimensionalizing the energy and/or the wavenumbers would simply move 
the curve horizontally or vertically, but not change its shape. The plots in figure 7 
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FIGURE 8. The bubble distribution probability density function for the 324 bubble run. The results 
have been averaged over nine equispaced times. When length is non-dimensionalized by d,, the 
average probability distribution function is equal to the void fraction. Twenty equispaced contours 
are plotted. 

show that the small-scale features of the flow have a very well-defined energy spectrum 
that is nearly identical for both runs and quickly reaches a steady state. At the larger 
scales both simulations show the same behaviour, but the spectrum is no longer 
constant with time. Instead we see - although the logarithmic scale used in this plot 
obscures the differences somewhat - a gradual increase in the energy content of the 
longest waves. We note that Singh & Joseph (1995) have also presented the energy 
spectrum of the velocity field. Their analysis, however, was for a one-dimensional 
model and they were concerned with different questions than those addressed here. 

The energy spectrum suggests that the behaviour of the smallest scales in the bubble 
cloud does not change as the large-scale motion does. To examine the small-scale 
bubble distribution we have computed the two-dimensional probability distribution 
function, P ( A x , d y ) ,  for the bubbles at several times. P shows the probability of 
finding a bubble at a given position relative to another bubble. To compute it, we 
first find the relative position of each bubble with respect to all other bubbles and 
then construct the two-dimensional distribution of relative positions by assigning the 
value of each relative position to a two-dimensional grid by area weighting. If the 
grid spacing is d7 then Ax = Ai ,  and Ay = Aj ,  and we can write P(Ax,  A y )  = Pij. If 
Nij  is the value of the distribution at each grid point, Pij is given by 

e 
where N T  is the total number of bubble pairs. Each bubble pair is only counted 
once and we average over the left-hand and the right-hand parts of the plot. To 
account for the periodicity of the domain, we compute not only the distance from 
one bubble to another, but also to the corresponding bubbles in adjacent periods, and 
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use the shortest distance to construct N i j .  Since no bubble can be closer to the bubble 
at the origin than one diameter (if the bubbles remain spherical) the distribution 
dips down to zero at the origin. For a fine grid, we would expect that P = 0 for 
r < d ,  but since our grid is relatively coarse, P is exactly zero only at the origin. In 
contrast to the energy spectrum which appears to converge quickly as the number of 
bubbles is increased, P converges much more slowly and we only show results from 
the larger run (324 bubbles) in figure 8. P is very ‘spiky’ at any given time due to 
the finite number of bubbles involved and the graph in figure 8 is the average over 
nine evenly spaced times. The mesh size for the grid used to find the probability 
distribution function in this figure is equal to the bubble diameter, or A = d,, and we 
plot the results for bubbles within ten diameters of each other. Finer grid results in 
a more ‘spiky’ graph. The average probability distribution function over the whole 
computational domain is simply the void fraction, and the figure shows that on 
the average the bubbles are nearly uniformly distributed with respect to each other, 
although near the origin there is a small preference for the bubbles to be side by side, 
rather than in tandem. 

4. Discussion 
The most striking feature of the results presented in the previous section is the 

continuous growth of the low-wavenumber velocity modes. In simulations with 
a much smaller number of bubbles (Esmaeeli & Tryggvason 1996~) we reached a 
statistically steady state relatively fast. Thus, it appears that the energy of the 
low-wavenumber velocity modes grows until modes comparable to the size of the 
computational domain are excited. This suggests that we cannot expect to reach a 
steady state that is independent of the size of the computational domain. While this 
behaviour may be a somewhat disappointing result, it should not be unexpected. 
Indeed, this is exactly what is seen in numerical simulations of two-dimensional 
turbulence in single-phase fluids, particularly when the motion is forced by random 
stirring at a given wavenumber. In two-dimensional flows, stretching of vortex 
tubes, which is the predominant mechanism generating small scales, is absent and 
mechanisms that generate larger scales, such as the pairing of vortex patches with 
the same sign vorticity, dominate the dynamics. Both simulations and theoretical 
arguments (see Lesieur 1991, for example, for a review and discussion) show that 
the energy spectrum has a k-5/3  slope below the forcing frequency where the energy 
flux is toward larger scales. Thus, while the high-frequency part of the spectrum 
reaches a steady state, the energy content in the low-wavenumber modes continues 
to grow until limited by the size of the computational domain. Below the forcing 
frequency a more rapid decay is observed. The exact slope is a matter of some 
controversy (see McWilliams 1984) but is generally believed to be at least -3 and 
most likely more negative. At the very lowest wavenumbers, a k3 spectrum is found 
due to non-local interactions between different periods. We have drawn lines with 
these slopes on the plots of the energy spectrum (figure 7), and although the range 
of scales is too limited to clearly identify distinct regions, the overall shape of our 
spectrum is not inconsistent with these slopes. The forcing due to the bubbles is, of 
course, very different from what is usually used in simulations of two-dimensional 
homogeneous turbulence. If the bubbles were uniformly distributed, we would have 
12 bubbles across the domain for one run and 18 for the other. We have marked the 
wavenumbers corresponding to forcing at these wavenumbers by an arrow in the plots 
in figure 7, and although we expect forcing at both higher and lower wavenumbers, 
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we see a change in the slope near the arrow. At the lowest wavenumbers the spectrum 
has a positive slope that is close to +3 at the latest time. Then there is a region with an 
approximately -5/3 slope, and finally there is a more rapid fall-off at wavenumbers 
above the forcing frequency. The last slope is considerably greater than -3. Since 
viscous dissipation is already strong at all wavenumbers above the forcing frequency, 
and the flow is presumably modified by the presence of the bubbles, we do not expect 
it to be in a very good agreement with the -3 slope or any other slope predicted by 
theoretical considerations of two-dimensional turbulence. Such theories are based on 
the assumption that the dynamics is governed by inertial effects, and since the bubble 
Reynolds number is so low in our case, that assumption is unlikely to be valid here. 
Although the bubble Reynolds number is relatively low, a Reynolds number based on 
the domain size is much larger and inertial effects can be significant at larger scales. 
We note that if the transfer of energy to larger scales is a direct consequence of the 
nonlinear interactions of flow scales of different sizes (as opposed to resulting from 
a clustering of the bubbles), the evolution seen here is inherently a finite Reynolds 
number effect and would not be approximated well by simulations ignoring all inertial 
effects, such as in, for example, Stokesian Dynamics. 

The result suggests that for these low-Reynolds-number flows, the bubbles can 
be viewed as a stirring force acting on the fluid. The force density, however, is a 
function of the flow and the bubbles are generally found in the up-flowing region 
of the large-scale vortices that emerge at later time. This is, of course, in contrast 
to what we would expect in flows with strong high-Reynolds-number vortices where 
the bubbles would accumulate in the centre of the vortices. For a steadily rising 
single bubble, all the work that the bubble does on the liquid is dissipated by viscous 
action. For a freely evolving array the bubbles arrange themselves in such a way 
that dissipation is reduced but since (at least initially) the average bubble velocity is 
nearly the same as for a single bubble, there is ‘extra’ work available that increases 
the kinetic energy of the fluid. This increase can be estimated from figure 6. Using a 
straight line fit to the energy versus time curve, the rate of increase in kinetic energy 
can be estimated to be 6.8 x lop4, in non-dimensional units. The rate of work per 
unit volume done on the fluid by the bubbles, if we neglect completely the density of 
the bubbles, is (in dimensional units) 

(4.1) 

where UB is the average rise velocity of the bubbles. If we non-dimensionalize the 
work in the same way as the energy, scale velocity by (gde)1 /2 ,  and use the rise velocity 
of a single bubble (0.2767 in these units), we find that 6 = a(1 - a)O, = 3.04 x 
(denoting the non-dimensional variables by a tilde). Therefore, slightly more than 2% 
of the work is fed to the larger scales. We suspect that this fraction depends strongly 
on the bubble Reynolds number. 

The average evolution of the bubbles is likely to depend sensitively on how the 
bubbles are distributed, on the average. For Stokes flows, theoretical estimates of 
the sedimentation rate of rigid spheres result, in some cases, in a linear relation 
between sedimentation rate and void fraction for dilute systems (Batchelor 1972), 
whereas in other cases it is found that sedimentation rate depends on the cubic 
root of the void fraction (Happel & Brenner 1965). Davis & Acrivos (1985) show 
that these two forms correspond to two limiting cases for the probability density 
function, namely a completely random distribution where the probability of finding 
a bubble at a given relative position to another bubble is constant, and a uniform 
distribution where the nearest neighbour separation is approximately equal to the 

w = poga( 1 - a) u, 
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average separation. Our results clearly indicate that the former is the case for our 
system, although the probability density function suggests that the bubbles spend 
a slightly longer time in a side by side configuration than in a tandem one. We 
also note that we observe transient structures, mostly as a result of the ‘drafting, 
kissing, and tumbling’ mechanism of Fortes, Joseph, & Lundgren (1987), but we have 
not seen the formation of horizontal layers like those observed by Fortes et al. for 
particles in a narrow channel and predicted by inviscid simulations (except for the 
slight asymmetry in P ) .  This is not surprising since the forces responsible for the layer 
formation are primarily inviscid, and Singh & Joseph (1995) found that the layers are 
not as observable at Re = 300 as they are for Reynolds numbers over a thousand. 
Here, the bubble Reynolds number is less than 2. 

While there is a net upward flow of bubbles that is larger than one would expect 
from results for a regular array (Esmaeeli & Tryggvason 1996a), one might ask why 
the bubbles do not all accumulate into an upward moving stream. Clearly, there is 
a tendency for the bubbles to come together and form such streams! We do not 
yet understand why the streams seem to break up as soon as they form and why 
so many bubbles are contained in regions of down flow, but offer the following two 
speculations. First, it is known that two bubbles in tandem is an unstable configuration 
and while bubbles are drawn into the wake of each other, they ‘tumble’ after collision 
and the bubble behind catches up with the one in front (the ‘drafting, kissing, and 
tumbling’ mechanism of Joseph and collaborators). At low Reynolds numbers, close 
bubbles in a side by side configuration repel each other (exactly opposite to what 
happens at higher Reynolds numbers, see Kim, Elghobashi, & Sirignano 1993, and 
Jan 1993) and it is possible that some bubbles are ‘pushed out’ of the stream by 
other bubbles. The other explanation relies on the lift force on the bubbles. Spherical 
(and cylindrical) bubbles moving upward in a vertical shear are driven toward the 
downward moving fluid and would thus be driven out of the upward moving stream. 
Since the direction of the lift force is very sensitive to the deformations of the bubbles 
(Kariyasaki 1987; Ervin & Tryggvason 1996; Esmaeeli, Ervin, & Tryggvason 1993), 
a cloud with more deformable bubbles might behave differently. 

5 .  Conclusion 
We have presented numerical results that suggest strongly that a two-dimensional 

low-Reynolds-number bubbly flow will continuously evolve toward a state containing 
larger and larger scales. This evolution will continue until the largest scales become 
comparable to the size of the computational domain. Thus, we cannot expect to 
reach a statistically steady state that is independent of the size of the system. While 
these are somewhat disappointing results from a modelling standpoint, where we 
would like to be able to obtain fully converged statistics using modest size systems, 
the same result is well known from simulations of forced two-dimensional turbulence 
in homogeneous flows, where the flow scales continue to grow until they reach the 
size of the computational domain. The similarity between these two flows suggests 
that the fluid ‘feels’ the effect of the bubbles mainly as a high-wavenumber forcing 
which pumps energy into the flow and excites the larger scales through nonlinear 
interactions. While the increase in the energy content of the larger scales is a two- 
dimensional phenomenon, it is possible that this model - that the bubbles can be 
treated as a small-scale ‘stirring force’ - is applicable to fully three-dimensional flows. 

Although we believe that the continuous growth of the scales here is a finite- 
Reynolds-number phenomenon, we note that continuous growth of the average length 
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scale is seen in flows at zero Reynolds number. The emergence of a single large finger 
in the Taylor-Saffman instability in a Hele-Shaw cell for a large viscosity contrast (see, 
for example, Tryggvason & Aref 1985) and the formation of large-scale ‘channels’ in 
suspensions of polydispersed particles in Stokes flow (Davis & Acrivos 1985) are two 
examples. Indeed, Revay (1992) concluded, based on his simulations using continuum 
models for bidispersed sedimentation in periodic domains, that his systems evolved 
continuously toward larger scales and that the final state depended on the size of the 
computational domain. 

From a practical point of view, two questions remain unanswered. First, what hap- 
pens in three dimensions? If the analogy with two-dimensional turbulence holds, then 
we would expect three-dimensional motion to continually regenerate smaller scales. 
Injection of bubbles into large containers is known to lead to large recirculation 
regions, but in those situations the bubbles are generally injected in a very confined 
area, thus imposing a forcing very different from what we have here. Second, what 
happens at higher Reynolds numbers? In Esmaeeli & Tryggvason (1996b) we have 
already shown that clouds of bubbles at higher Reynolds numbers behave fundamen- 
tally differently from low Reynolds number clouds. While the rise velocity of a freely 
evolving low-Reynolds-number cloud is higher than that of a uniform distribution 
of bubbles, the opposite is true at higher Reynolds numbers. Thus, it seems possible 
that higher-Reynolds-number flows would exhibit different behaviour, even in two 
dimensions. The mechanisms that we suggested to explain the breakup of the streams 
of bubbles that appeared in the freely evolving array are also different at higher 
Reynolds numbers. Moreover, it is possible that the deformability of the bubbles 
could significantly influence the mechanisms discussed above. We hope to return to 
these questions in the future. 
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